Factores claves que afectan a la preferencia trófica y diversidad de coleópteros copro-necrófagos del bosque Atlántico de Argentina: una propuesta de conservación

Victoria C. Giménez Gómez, José R. Verdú, Gustavo A. Zurita

Resumen

La sustitución de ecosistemas naturales es una de las principales causas de pérdida de biodiversidad, ya que modifica las condiciones climáticas y recursos alimenticios para los organismos. En este trabajo se muestran los resultados de dos estudios ya publicados en el Bosque Atlántico de Argentina, uno asociado con el efecto de la perturbación de ecosistemas naturales sobre las preferencias tróficas de coleópteros copro-necrófagos y el otro asociado con el efecto de diferentes factores (presencia/ausencia de cobertura de dosel arbóreo, presencia/ausencia de ganado y vegetación nativa o exótica) sobre su riqueza y composición. En ambos estudios los coleópteros copro-necrófagos fueron muestreados en bosque nativo y cuatro usos de la tierra. Los resultados muestran que la perturbación ambiental afecta, en parte, a la preferencia trófica de coleópteros copro-necrófagos, ya que algunos tienden a tolerar las nuevas condiciones tróficas mientras que otros no, y que la pérdida de cobertura de dosel arbóreo es el factor principal que afecta su diversidad. La conclusión de este trabajo es que la perturbación antrópica afecta las preferencias tróficas y la diversidad de coleópteros copro-necrófagos, sobre todo en aquellos ambientes que pierden la cobertura de dosel arbóreo, por lo que su mantenimiento es la principal recomendación de manejo sugerida en este trabajo.

Palabras clave

Cobertura de dosel arbóreo; Nicho ecológico; Ambiente de bosque; Ganado; Condiciones climáticas

Texto completo:

PDF (997,63 kB) Estadísticas

Referencias

Alvarado, F., Escobar, F., Williams, D.R., Arroyo-Rodriguez, V. y Escobar-Hernández, F. (2018). The role of livestock intensification and landscape structure in maintaining tropical biodiversity. Journal of Applied Ecology, 55:185–194. https://doi.org/10.1111/1365-2664.12957.

Andrade-Núñez, M.J. y Aide, T.M. (2010). Effects of habitat and landscape characteristics on medium and large mammal species richness and composition in northern Uruguay. Zoologia, 27: 909-917. http://www.scielo.br/pdf/zool/v27n6/12.pdf.

Andresen, E. (2003). Effect of forest fragmentation on dung beetles communities and functional consequences for plant regeneration. Ecography, 26: 87-97. https://doi.org/10.1034/j.1600-0587.2003.03362.x.

Andresen, E. y Feer, F. (2005). The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. En: Forget, P.M., Lambert, J.E., Hulme, P.E. y Vander Wall, S.B. (eds.). Predation, Dispersal and Seedling Establishment. CABI International, Wallingford, UK. pp 331–349.

Anduaga, S. y Halffter, G. (1993). Nidificación y alimentación en Lia tongus rhinocerulus (Bates) (Coleoptera:Scarabaeidae: Scarabaeinae). Acta Zoologica Mexicana, 57: 1-4.

http://www.acuedi.org/doc/2833/nidificacin-y-alimentacin-en-lia-tongus-rhinocerulus-%28bates%29-%28coleoptera-scarabaeidae-scarabaeinae%29.html.

Arellano, L., León-Cortés, J. y Halffter, G. (2008). Response of dung beetle assemblages to landscape structure in remnant natural and modified habitats in southern Mexico. Insect Conservation and Diversity, 1: 253–262. https://doi.org/10.1111/j.1752-4598.2008.00033.x.

Audino, I., Louzada, J. y Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity?. Biological Conservation, 169: 248–257. https://doi.org/10.1016/j.biocon.2013.11.023.

Bang, H.S., Lee, J.H., Kwon, O.S., EunNa, Y., Jang, Y.S. y Kim, W.H. (2005). Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Applied Soil Ecology, 29: 165-171. https://doi.org/10.1016/j.apsoil.2004.11.001.

Bogoni, J.A. y Hernández, M.I.M. (2014). Attractiveness of Native Mammal´s feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae). Journal of Insect Science, 14, 1, 1. https://doi.org/10.1093/jisesa/ieu161.

Bornemissza, G.E. y Williams, C.H. (1970). An effect of dung beetles activity on plant yield. Pedobiologia, 10: 1-7. https://www.cabdirect.org/cabdirect/abstract/19740516596.

Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H. y Antonie, G. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21: 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x.

Bustos-Gómez, F. y Lopera Toro, A. (2003). Preferencia por cebo de los escarabajos coprofagos (Coleoptera: Scarabaeidae: Scarabaeinae) de un remante de bosque seco tropical al norte de Tolima (Colombia). Sociedad Entomológica Aragonesa, 30: 59-65.

Cabrera. (1971). Fitogeografía de Argentina. Boletín de sociedad Argentina de Botánica, Volúmen XIV, Nro 1-2.

Cambefort, Y. y Hanski, I. (1991). Dung beetle population biology. En: Hanski, I. y Camberfort, Y (eds.). Dung beetle ecology. Princeton University Press, Princeton, NJ. pp 36-50.

Campanello, P.I., Montti, L., Goldstein, G. y Mac Donagh, P. (2009). Reduced impact logging and post-harvesting forest management in the Atlantic Forest: alternative approaches to enhance canopy tree growth and regeneration and to reduce the impact of invasive species. En: Grossberg, S.P. (ed.). Forest management. Nova Science. New York. pp 39–59.

Chao, A., Ma, KH. y Hsieh, T.C. (2016). iNEXT (iNterpolation and EXTrapolation) Online: software for interpolation and extrapolation of species diversity. Program and user’s guide. http://chao.stat.nthu.edu.tw/wordpress/software_download/.

Chown, S.L. (2001). Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology, 47:649–660. https://doi.org/10.1016/S0022-1910(00)00163-3.

Christie, F.J. y Hochuli, D.F. (2008). Responses of wasp communities to urbanization: effects on community resilience and species diversity. Journal of Insect Conservation, 13: 213-221. https://link.springer.com/article/10.1007/s10841-008-9146-5.

Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Journal of Ecology, 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

Clarke, K.R. y Gorley, R.N. (2006). PRIMER v6. User manual/tutorial. PRIMER-E, Plymouth.

Culot, L., Bovy, R., Vaz-de-Mello, F.Z., Guevara, R. y Galetti, M. (2013). Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biological Conservation, 163: 79–89. https://doi.org/10.1016/j.biocon.2013.04.004.

Davies, K.F. y Margules, C.R. (1998). Effects of habitat fragmentation on carabid beetles: experimental evidence. Journal of Animal Ecology, 67: 460-471. https://doi.org/10.1046/j.1365-2656.1998.00210.x.

Davis, A.L.V. (1996). Seasonal dung beetle activity and dung dispersal in selected South African habitats: implications for pasture improvement in Australia. Agriculture, Ecosystems and Environment, 58: 157–169. https://doi.org/10.1016/0167-8809(96)01030-4.

Davis, A.L.V., Chown, S.L., McGeoch, M.A. y Scholtz, C.H. (2000). A comparative analysis of metabolic rate in six Scarabaeus species (Coleoptera: Scarabaeidae) from southern Africa: further caveats when inferring adaptation. Journal of Insect Physiology, 46:553–562. https://doi.org/10.1016/S0022-1910(99)00141-9.

Davis, A.L.V., Van Aarde, R.J., Scholtz, C.H. y Delport, J.H. (2002). Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa. Global Ecology and Biogeography, 11: 191–209. https://doi.org/10.1046/j.1466-822X.2002.00283.x.

Davis, A.L.V., Frolov, A.V. y Scholtz, C.H. (2008). The African dung beetle genera. Protea Book Publishers, Pretoria.

Da Silva, P.G., Vaz-de-Mello, F.Z. y Di Mare, R.A. (2013). Diversity and seasonality of Scarabaeinae (Coleoptera: Scarabaeidae) in forest fragments in Santa Maria, Rio Grande do Sul, Brazil. Annals of the Brazilian Academy of Sciences, 85: 679-697. http://www.scielo.br/pdf/aabc/2013nahead/0001-3765-aabc-00-00-3313.pdf.

Da Silva, P.G. y Hernández, M.I.M. (2015). Spatial Patterns of Movement of Dung Beetle Species in a Tropical Forest Suggest a New Trap Spacing for Dung Beetle Biodiversity Studies. PLoS ONE, 10: e0126112. https://doi.org/10.1371/journal.pone.0126112.

Da Silva, P.G. y Hernández, M.I.M. (2016). Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Revista Brasileira de Entomología, 60: 73-81. https://doi.org/10.1016/j.rbe.2015.11.001.

De Angelo, C. (2009). El paisaje del bosque Atlántico del Alto Paraná y sus efectos sobre la distribución y estructura poblacional del jaguar (Panthera onca) y el puma (Puma concolor). Tesis doctoral. Universidad de Buenos Aires, Argentina. https://documentop.com/de-angelo-2009-tesis-uba-el-paisaje-del-bosque-atlantico-del-alto-parana-y-sus-e_59fc9c3b1723dd376cb47113.html.

Dinghi, P.A., Sánchez, M.V., Cantil, L.F., Sarzetti, L.C. y Genise, J.F. (2013). Leaf-litter brood chambers in dichotomius (luederwaldtinia) carbonarius (mannerheim, 1829) (coleoptera: scarabaeidae): a novel behavior for dung beetles. Coleopterist Bulletin, 67:388–396. https://doi.org/10.1649/0010-065X-67.3.388.

Dinno, A. (2017). Conover.prueba: Conover-Iman Prueba of Multiple Comparisons Using Rank Sums. R package version 1.1.4. https://CRAN.R-project.org/package=conover.prueba.

Dirzo, R. y Raven, P.H. (2003). Global state of biodiversity and loss. Annual Reviews Environment and Resources, 28: 137-167. https://www.annualreviews.org/doi/abs/10.1146/annurev.energy.28.050302.105532.

Di Bitetti, M.S., Placci, G. y Dietz, L.A. (2003). A biodiversity vision for the upper Paraná Atlantic Forest ecoregion: Designin a Biodiversity Conservation Landscape and Setting Priorities for Conservation Action. World Wild life Fund. Washington, D.C, U.S.A. https://www.coursehero.com/file/29404962/A-Biodiversity-Vision-for-the-Upper-Parana-Atlantic-Forest-Ecoregiondoc/.

Duncan, F.D. y Byrne, M.J. (2000). Discontinuos gas exchange in dung beetles: patterns and ecological implications. Oecologia, 12: 452-458. https://link.springer.com/article/10.1007/s004420050966.

Estrada, A. y Coates-Estrada, R. (1991). Howler monkeys (Alouatta palliata), dung beetles (Scarabaeidae) and seed dispersal: ecological interactions in the tropical rain forest of Los Tuxtlas, Mexico. Journal of tropical ecology, 7: 459-474. https://doi.org/10.1017/S026646740000585X.

Filgueiras, B.K.C., Liberal, C.N., Aguiar, C.D.M., Hernández, M.I.I. y Iannuzzi, L. (2009). Attractivity of omnivore carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera Scarabaeidae) in a tropical Atlantic Forest remnant. Revista Brasileira de Entomología, 53: 422–427. http://dx.doi.org/10.1590/S0085-56262009000300017.

Fincher, G.T., Stewart, T.B. y Davis, R. (1970). Attraction of coprophagous beetles to dung of various animals. Journal of Parasitology, 56: 378-383. https://www.jstor.org/stable/3277680.

Galbiati, C., Bensi, C., Conceição, C.H.C., Florcoviski, J.F. y Calafiori, M.H. (1995). Estudo comparativo entre besouros do esterco Dichotomius anaglypticus (Mann., 1829) e Onthophagus gazella (F.), sobre a pastagem, em condições brasileiras. Ecosistema, 20: 109-118.

Gardner, T.A., Hernández, M.I.M., Barlow, J. y Peres, C.A. (2008). Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. Journal of applied ecology, 45: 883-893. https://doi.org/10.1111/j.1365-2664.2008.01454.x.

Giménez Gómez, V.C., Verdú, J.R., Gómez-Cifuentes, A., Vaz-de-Mello, F.Z. y Zurita, G.A. (2018a). Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect conservation and diversity, 11: 554-564. https://doi.org/10.1111/icad.12299.

Giménez Gómez, V.C., Verdú, J.R., Guerra Alonso, C. y Zurita, G.A. (2018b). Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodiversity and Conservation, 27: 3201-3213. https://doi.org/10.1007/s10531-018-1597-8.

Gómez-Cifuentes, A., Munevar, A., Gimenez, V.C., Gatti, M.G. y Zurita, G.A. (2017). Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. Journal of Insect Conservation, 21: 147-156. https://doi.org/10.1007/s10841-017-9964-4.

Gómez-Cifuentes, A., Giménez Gómez, V.C., Moreno, C.E. y Zurita, G.A. (2018). Dung beetles diversity in livestock areas in the southern Atlantic forest: the role of microclimatic conditions and soil structure. Basic and Applied Ecology, 34: 64-74. https://doi.org/10.1111/1365-2664.12957.

Halffter, G. y Matthews, E.G. (1966). The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Sociedad Mexicana de Entomologia, 14: 1-312. https://doi.org/10.1002/mmnz.19690450211.

Halffter, G., Favila, M.E. y Halffter, V. (1992). A comparative study of the structure of the scarab guild in Mexican tropical rain forests and derived ecosystems. Revista Entomológica Mexicana, 84: 131–156.

Halffter, G. y Arellano, L. (2002). Response of Dung Beetle Diversity to Human-induced Changes in a Tropical Landscape. Biotropica, 34: 144–154. https://doi.org/10.1111/j.1744-7429.2002.tb00250.x.

Halffter, G. y Halffter, V. (2009). Why and where coprophagous beetles (Coleoptera: Scarabaeinae) eat seed, fruits or vegetable detritus. Boletín Sociedad Entomológica Aragonesa, 45: 1-22.

Hammer, O., Harper, D.A.T. y Ryan, P.D. (2001). Past: paleontological statistics software package for education and data analysis. Paleontología Electrónica, 4: 1–9.

Hanafy, H.E.M. (2012). Effect of dung beetles, Scarabaeus sacer (Scarabaeidae: Scarabaeinae) on certain biochemical contents of leaves and fruits of tomato and squash plants. Journal of Applied Science Research, 8: 4927-4936. http://www.aensiweb.com/jasr/jasr/20133057734.

Hanski, I. y Cambefort, Y. (1991). Dung Beetle Ecology. Princeton University Press, Princeton.

Hernández, M.I.M. y Vaz-de-Mello, F.Z. (2009). Seasonal and spatial species richness variation of dung beetle (Coleoptera, Scarabaeidae s. str.) in the Atlantic Forest of southeastern Brazil. Revista Brasileira de Entomologia, 53: 607–613. HTTP://www.scielo.br/rbent.

Hernández, M.I.M., Barreto, P.S.C.S., Costa, V.H., Creao-Duarte, J. y Favila, M.E. (2014). Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. Journal of Insect Conservation, 18: 539–546. https://doi.org/10.1007/s10841-014-9645-5.

Hewavithana, D.K., Wijesinghe, M.R., Dangalle, C.D. y Dharmarathna, H.A.S. (2016). Habitat and dung preferences of scarab beetles of the subfamily Scarabaeinae: a case study in a tropical monsoon forest in Sri Lanka. International Journal Tropical Insect Science, 36:97–105. https://doi.org/10.1017/S1742758416000023.

Holter, P., Scholtz, C.H. y Stenseng, L. (2009). Desert detritivory: nutritional ecology of a dung beetle (Pachysoma glentoni) subsisting on plant litter in arid South African sand dunes. Journal of Arid Environment, 73:1090–1094. https://doi.org/10.1016/j.jaridenv.2009.04.009.

Holz, S. y Placci, G. (2003). Socioeconomic roots of biodiversity loss in Misiones. En: Galindo-Leal, C. y Gusmão Câmara, I. (eds.). Atlantic Forest of South America: biodiversity status, threats, and outlook. Washington, D.C, U.S.A. pp 207-226.

Izquierdo, A.E., De Angelo, C.D. y Aide, T.M. (2008). Thirty years of human demography and land use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecology Society, 13: 3. https://www.ecologyandsociety.org/vol13/iss2/art3/.

Larsen, T.H. y Forsyth, A. (2005). Trap Spacing and Transect Design for Dung Beetles Biodiversity Studies. Biotropica, 37: 322-325. https://doi.org/10.1111/j.1744-7429.2005.00042.x.

Marsh, C.J., Louzada, J., Beiroz, W. y Ewers, R.M. (2013). Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae). PLoS ONE, 8: e73147. https://doi.org/10.1371/journal.pone.0073147.

Monteith, G.B. y Storey, R.I. (1981). The biology of Cephalodesmius, a genus of dung beetles which synthesizes “dung” from plant material (Coleoptera: Scarabaeidae: Scarabaeinae). Memoirs of the Queensland Museum, 20:253–277. https://www.biodiversitylibrary.org/part/154556#/summary.

Myers, M., Mittermeir, R.A., Mittermeir, C.G., Da Fonseca, G.A.B. y Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. https://doi.org/10.1038/35002501.

Myers, N. y Knoll, A.H. (2001). The biotic crisis and the future of evolution. Proceedings of the National Academy of Sciences, 98: 5389-5392. https://doi.org/10.1073/pnas.091092498.

Neita, J.C. y Escobar, F. (2012). The potential value of agroforestry to dung beetle diversity in the wet tropical forests of the Pacific lowlands of Colombia. Agroforestry Systems, 85: 121–131. https://doi.org/10.1007/s10457-011-9445-9.

Nichols, E., Larsen, T., Spector, S., Davis, A.L., Escobar, F., Favila, M. y Vulinec, K. (2007). Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biological Conservation, 137: 1-19. https://doi.org/10.1016/j.biocon.2007.01.023.

Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. y Favila, M.E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, 141: 1461-1474. https://doi.org/10.1016/j.biocon.2008.04.011.

Nichols, E., Gardner, T.A., Peres, C.A. y Spector, S. (2009). Co-declining mammals and dung beetles: an impending ecological cascade. Oikos, 118: 481–487. https://doi.org/10.1111/j.1600-0706.2009.17268.x.

Nichols, E., Uriarte, M., Bunker, D.E., Favila, M.E., Slade, E.M., Vulinec, K., Larsen, T., Vaz-de-Mello, F.Z., Louzada, J., Naeem, S. y Spector, S.H. (2013). Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, 94: 180-189. https://doi.org/10.1890/12-0251.1.

Novacek, M.J. y Cleland, E.E. (2001). The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences, 98: 5466-5470. https://doi.org/10.1073/pnas.091093698.

Ocampo, F.C. y Hawks, D.C. (2006). Molecular phylogenetics and evolution of the food relocation behaviour of the dung beetle tribe Euraniini (Coleoptera: Scarabaeidae: Scarabaeinae). Invertebrate Systematics, 20: 557-570.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.M., Szoecs, E. y Wagner, H. (2017). vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan2012.

Oliveira-Filho, A.T. y Fontes, I.A.M. (2000). Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the Influence of climate. Biotropica, 32: 793–810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x.

Osberg, D.C., Doube, B.M. y Hanrahan, S.A. (1994). Habitat specificity in African dung beetles. The effect of soil type on the survival of dung beetle immatures (Coleoptera Scarabaeidae). Tropical Zoology, 7: 1-10. https://www.tandfonline.com/doi/pdf/10.1080/03946975.1994.10539236.

Peyras, M., Vespa, N., Bellocq, M. y Zurita, G. (2012). Quantifying edge effects: the role of habitat contrast and species specialization. Journal of Insect Conservation, 17: 807-820. https://doi.org/10.1007/s10841-013-9563-y.

Philips, K., Pretorius, E. y Scholtz, C. (2004). A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebrate Systematics, 18: 53–88. https://doi.org/10.1071/IS03030.

Quintero, I. y Roslin, T. (2005). Rapid recovery of dung beetle communities following habitat fragmentation in central Amazonia. Ecology, 12: 3303– 3311. https://doi.org/10.1890/04-1960.

Ribeiro, M.C., Metzger, J.P., Camargo Martensen, A., Ponzoni, F.J. y Hirota, M.M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142: 1141-1153. https://doi.org/10.1016/j.biocon.2009.02.021.

Sánchez-de-Jesús, H., Arroyo-Rodríguez, V., Andresen, E. y Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31:843–854. https://doi.org/10.1007/s10980-015-0293-2.

Scheffler, P.Y. (2005). Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. Journal of Tropical Ecology, 21: 9–19. https://doi.org/10.1017/S0266467404001683.

Schmitte, T., Thorsten, K.F. y Linsenmair, E. (2004). Quinone mixture as attractant for necrophagous dung beetles specialized on dead millipedes. Journal of Chemical Ecology, 30: 731- 740. https://doi.org/10.1023/B:JOEC.0000028428.53797.cb.

Scholtz, C.H., Harrison, J.G. y Grebennikov, V.V. (2004). Dung beetle (Scarabaeus (Pachysoma)) biology and immature stages: reversal to ancestral states under desert conditions (Coleoptera: Scarabaeidae). Biological Journal of the Linnean Society, 83:453–460. https://doi.org/10.1111/j.1095-8312.2004.00389.x.

Slade, E.M., Riutta, T., Roslin, T. y Tuomisto, H.L. (2016). The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Nature, 6: 18140. https://doi.org/10.1038/srep18140.

Sowig, P. (1995). Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography, 18: 147–154. https://doi.org/10.1111/j.1600-0587.1995.tb00335.x.

Spector, S. (2006). Scarabaeine dung beetles (Coleopteran: Scarabaeidae: Scarabaeinae): an invertebrate focal taxon for biodiversity research and conservation. The Coleopterists Bulletin, 60: 71-83. https://doi.org/10.1649/0010-065X(2006)60[71:SDBCSS]2.0.CO;2.

Tshikae, B.P., Davis, A.L.V. y Scholtz, C.H. (2013). Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient. Acta Oecología, 49: 71-82. https://doi.org/10.1016/j.actao.2013.02.011.

Tonelli, M. (2017). Effect of different pasture management on dung beetles communities in a sub-mountainous landscape of central Italy: a multicomponent biodiversity and ecological process analysis. Tesis doctoral. http://hdl.handle.net/10045/65761.

Tuff, K.T., Tuff, T. y Davies, K.F. (2016). A framework for integrating thermal biology into fragmentation research. Ecology Letter, 19:361–374. https://doi.org/10.1111/ele.12579.

Verdú, J.R., Arellano, L., Numa, C. y Mico, E. (2007a). Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecological Entomology, 32: 544–551. https://doi.org/10.1111/j.1365-2311.2007.00907.x.

Verdú, J.R., Moreno, C.E., Sánchez-Rojas, G., Numa, C., Galante, E. y Halffter, G. (2007b). Grazing promotes dung beetle diversity in the xeric landscape of a Mexican biosphere reserve. Biological Conservation, 140: 308–317.

https://doi.org/10.1016/j.biocon.2007.08.015.

Verdú, J.R., Lobo, J.M., Sánchez-Piñero, F., Gallego, B., Numa, C., Lumaret, J.P., Cortez, V., Ortiz, A., Tonelli, M., García-Teba, R.A., Rodriguez, A. y Durán, J. (2018). Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of the Total Environment, 618: 219-228. https://doi.org/10.1016/j.scitotenv.2017.10.331.

Vulinec, K. (2002). Dung beetles communities and seed dispersal in primary forest and disturbed land in Amazonia. Biotropica, 34: 297-309. https://doi.org/10.1111/j.1744-7429.2002.tb00541.x.

Zaninovich, S.C., Fontana, J.L. y Gatti, M.G. (2016). Atlantic forest replacement by non-native tree plantations: comparing aboveground necromass between native forest and pine plantation ecosystems. Forest Ecology and Management, 363:39–46. https://doi.org/10.1016/j.foreco.2015.12.022.

Zurita, G.A. y Bellocq, M.I. (2012). Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica, 44: 412–419. https://doi.org/10.1111/j.1744-7429.2011.00821.x.




DOI: https://doi.org/10.14198/cdbio.2019.56.03





Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.